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By one-/two-electron reduction of specifically constructed,
rigidly preorganized bisdiazenes1,2 unusually effective in-plane
(σ) homoconjugation/homoaromaticity (4N/5e, 4N/6e) was dem-
onstrated. That oxidation of such bisdiazenes after “protection”3

and activation4 in the form of their tetra-N-oxides leads to novel,
O-stabilized 4N/3e radical cations (1•+) and (presumably) 4N/2e
dications (12+) is the subject of this paper.

As an exemplary case, the tetra-N-oxide 1 was prepared
together with reference trioxide2 (1:1 mixture with the 4,5,10-
trioxide) from bisdiazene33 along standard procedure; the latter
had been a rewarding testing object in the oxidation as well as in
the reduction study.2,3 While no bathochromic shift due to ONd
NO/ONdNO interaction was expressed in the UV spectra of1
(λmax(H2O) ) 263 nm; cf.6 λmax(H2O) ) 261 nm), the absorption
of 2 (λmax(H2O) ) 276 240 nm) was quite different from that of
6 and5 (λmax(H2O) ) 228 nm). The DBO-dioxide6, the ONd
NO reference for1 and2, has recently been reported (Blackstock
et al.5) to give a solution stableπ-radical with a lifetime of seconds
to minutes at room temperature (E1/2 ) 1.65 V, hfcs (mT) 0.122
(2N), 0.086 (4H)). For DBO-monoxide5 no radical cation
formation could so far be observed by CV (Eox > 3 V); 4•+ is
extensively investigated.6

In the CV experiments with trioxide2 (Figure 1) the oxidation
potential proved practically identical to that of6 (E1/2 (2) ) 1.65
V). The ESR spectra obtained for2 through electrooxidation in
the cavity of the spectrometer (Figure 2) were satisfactorily
simulated with parameters (1H hfcs (mT) 0.125(1H), 0.080(1H),
0.078(2H);14N hfcs 0.109(1N), 0.094(1N)) closely related to those
of 6•+; again the small14N hfcs are typical for aπ-type ONd
NO•+ radical cation bearing most of its spin density on the O
atoms.5 This interpretation is supported by the measuredg-factor
of g ) 2.0064. The radical cation of trioxide2 is obviously best
represented with the odd electron mostly localized in the ONd
NO part (2•+).7

The CV spectrum of the hardly soluble tetroxide1 (Figure 1)
exhibits two oxidation waves atE1/2 (298 K) ) 1.37 and 1.91 V,
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dimer (NIMAG ) 0) with a N-N distance of 1.845 Å.

Figure 1. CV spectra of1 and2 (CH3CN, Ag/AgCl, 0.1 M TBAPF6,
0.5 V s-1. 1: 253 K, 2: 298 K).

Figure 2. Experimental and simulated ESR spectra of1 and 2 (bulk
electrolysis2: TFA/CH2Cl2, 0.1M TBAClO4, 269 K, 1: TFA, 0.1 M
TBAPF6, 238 K).
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with the first, reversible one being shifted relative to2 (6) by ca.
0.3 V to lower anodic potential; dication formation is accompanied
by a follow-up process. Spectroelectrochemical measurements
(Figure 3) confirmed the formation of a colorless species (1•+),
at room-temperature somewhat more persistent (ca. 30 min) than
6•+,5 with a NIR absorption at 1020 nm as sole distinctive signal.
Isosbestic points at 248 and 285 nm for oxidation and reduction
indicate a neat reversible reaction. When chemical oxidation of
1, as for 2, had failed (Tl(CF3CO2)3, DDQ/TFA/hν, (Ph-2,4-
Br2)3N•+SbCl6-), ESR studies again were performed during in
situ electrolysis (Figure 2). Independent of solvent and temperature
(CH3CN; CH3CN/CF3CO2H, 230 K; (CF3)2CHOH; (CF3)2CHOH/
CF3CO2H, 279 K) a single, very intense, and very narrow line
was registered which could not be further resolved.

B3LYP/6-31G* calculations8 were performed for1•+, 12+, 2•+,
4•+, and 6•+. While for 6•+ the 1H and 14N hfcs differed
substantially from the experimental data,9 the1H and14N hfcs of
4•+ were reproduced within 0.03 mT compared with the experi-
ment. For1•+ and12+ (Figure 4) the calculations establish their
delocalized nature as novel 4N/3e and (σ-bishomoaromatic?) 4N/
2e systems.10 With the spin population in1•+ even more
concentrated at the O atoms than in2•+, with F(4O (3O))) 0.98
(0.83) andF(4N) ) 0.02 (0.17) for1•+(2•+), and the nodal plane
of the SOMO separating the two ONdNO units, the smaller1H
and 14N hfcs (smaller bandwidth) for1•+ are plausible. To be
noted, the elongation of the NdN bonds and the shortening of
the transannularN,N distances upon oxidation come close to that
for the reduction3 f 3•-(2-), and the transannular N-N distance
in 12+ (average 2.55 Å) close to that of the 4C/2e dications.2 For
1/1•+ the pertinent structural changes (N-O, NdN) amount to
roughly half the changes calculated for6/6•+.6

Given the (substantial) shortening of the N-O (∆d ca. 0.02 Å
for 1•+, 0.02, 0.04 Å for12+) and transannular O-O distances
bringing O4-O10 (O5-O9) in 1•+ (∆d ca. 0.7 Å) and12+ (∆d

ca. 0.3, ca. 1.0 Å) close and even below the transannular N-N
and the van der Waals O-O distances, the alternative 4O4N/11e
and 4O4N/10e representations with a three-dimensional cubic
electron delocalization (aromaticity11) make up for intriguing
speculations.

Work is in progress to explore the structural limitations for
cyclic electron delocalization in cofacial bisdiazene-tetroxide ions
of modified structure,12 to obtain additional information through
PE analyses,15N and17O NMR measurements, and, particularly
for dications, through oxidations in superacid media.2
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Figure 3. UV/IR control of the oxidation1 f 1•+ (CH3CN, 1.6 V vs
Ag/AgCl, 0.1 M TBAPF6, 238 K).

Figure 4. B3LYP/6-31G* structural details (Å, deg) of parents1 and3,
cations1•+/12+ and anions3•-/32-.
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